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Abstract 

Purpose:  This study aims to further enhance a validated radiomics-based model for predicting pathologic complete 
response (pCR) after chemo‑radiotherapy in locally advanced rectal cancer (LARC) for use in clinical practice.

Methods:  A generalized linear model (GLM) to predict pCR in LARC patients previously trained in Europe and 
validated with an external inter-continental cohort (59 patients), was first examined with further 88 intercontinental 
patient datasets to assess its reproducibility; then new radiomics and clinical features, and validation methods were 
investigated to build a new model for enhancing the pCR prediction for patients admitted to our department. The 
patients were divided into training group (75%) and validation group (25%) according to their demographic. The 
least absolute shrinkage and selection operator (LASSO) logistic regression was used to reduce the dimensionality of 
the extracted features of the training group and select the optimal ones; the performance of the reference GLM and 
enhanced models was compared through the area under curve (AUC) of the receiver operating characteristics.

Results:  The value of AUC of the reference model was 0.831 (95% CI, 0.701–0.961), and 0.828 (95% CI, 0.700–0.956) in 
the original and new validation cohorts, respectively, showing a reproducibility in the applicability of the GLM model. 
Eight features were found to be significant with LASSO and used to establish an enhanced model. The AUC of the 
enhanced model of 0.926 (95% CI, 0.859–0.993) for training, and 0.926 (95% CI, 0.767–1.00) for the validation group 
shows better performance than the reference model.

Conclusions:  The GLM model shows good reproducibility in predicting pCR in LARC; the enhanced model has the 
potential to improve prediction accuracy and may be a candidate in clinical practice.
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Background
For locally advanced rectal cancer (LARC), the standard-
of-care treatment is preoperative neoadjuvant chemora-
diotherapy (nCRT) followed by total mesorectal excision 
(TME). While TME remains the gold standard, it is asso-
ciated with significant morbidity and long-term effects 
on anorectal, urinary, and sexual function [1, 2]. Despite 
the consensus on this treatment schedule, the response 
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of these tumors is heterogeneous, with approximately 
20% of patients showing a pathologic complete response 
(pCR) [3, 4]; which might be indicative of a prognosti-
cally favorable biological tumor profile with less pro-
pensity for local or distant recurrence and improved 
survival [5]. Therefore, in those who achieve a pCR, some 
researchers have questioned the use of TME surgery and 
investigated the appropriateness of proceeding with a 
partial resection, or even omitting surgery while under-
taking intensive follow-up [6, 7]. It is critical to be able 
to early identify those patients who will have a complete 
clinical response to nCRT, which has remained a topic of 
research for many years. Tumor-related factors including 
clinical, pathological, radiological and molecular markers 
were studied for the prediction of pCR [8–10], however, 
no robust markers have been identified so far.

Recently, radiomics has emerged as a viable and pow-
erful tool for diagnostic and prognostic purpose [11]. 
The term radiomics refers to the extraction and analy-
sis of features from medical images acquired by proton 
emission tomography, computed tomography, magnetic 
resonance (MR), etc., to build descriptive, diagnostic, 
or predictive models. These medical images effectively 
carry an immense source of potential data for decoding 
tumor phenotypes [12]. The strength of radiomics lies in 
the wide use and non-invasiveness of medical imaging 
in clinical routine. The translation of radiomics analysis 
into standard cancer care to support treatment decision-
making involves the development of prediction models 
integrating clinical information that can assess the risk of 
specific tumor outcomes [11].

In the case of radiomic-based prediction of pCR in 
LARC, many studies have developed predictive models 
based on clinical medical images. Bundschuh et  al. [13] 
extracted textural features from pre-treatment 18F-FDG 
PET/CT and the coefficients of variation showed the 
capability to assess pCR in 27 patients. Lovinfosse et al. 
[14] found textural features of 18F-FDG PET/CT espe-
cially coarseness had better predictive power than inten-
sity- and volume-based parameters for pCR prediction 
in a cohort of 86 LARC patients. While non-contrast 
CT is not diagnostically used for LARC, Hamerla et  al. 
[15] concluded that no added value of a radiomics model 
based on non-contrast CT for prediction of pCR. MRI 
with superior soft tissue contrast is the current standard 
in the assessment and staging of rectal cancer, thus many 
radiomics based prediction is conducted on MRI, and the 
multiparametric nature of MRI further attracted growing 
research interest. Zhou et al. [16] studied multiparamet-
ric MRI-based model based on including T1-weighted 
(T1w), T2-weighted (T2w), diffusion-weighted imag-
ing (DWI) and contrast-enhanced T1-weighted 
to predict pCR. De Cecco et  al. [17] extracted the 

texture parameters of pre- and after-treatment T2w MRI 
acquired on a 3 T scanner, and found that the quantita-
tive change of texture parameters have the potential to 
act as imaging biomarkers of pCR. Boldrini et  al. [18] 
also suggested the change of the features of daily images 
throughout the treatment in 0.35  T MRI-guided radio-
therapy can discriminate between pCR and non-pCR 
patients.

Our work originated in a previously developed mag-
netic resonance, vendor-independent radiomics based 
model [19]. This model, as a reference model, was devel-
oped using pre-treatment T2w MRI acquired on a 1.5 T 
scanner in Europe. Here we aim to evaluate its reproduc-
ibility and generalization with pre-treatment 3  T T2w 
MRI of LARC patients admitted to our center. Moreo-
ver, the reference model only adopted geometrical and 
intensity-histogram features, while a lot of other radiom-
ics features also show the potential to act as biomarkers 
in some studies [20–24]. We investigated the significance 
of a wider range of radiomics features to the pCR status 
and build a new radiomics model to further enhance its 
prediction of the response to nCRT for LARC patients 
admitted to our institute.

Methods
Reference model
A generalized linear model (GLM) [19], which was built 
to predict pCR in LARC patients using a single-center 
training set of 162 patients and 2 external validation 
sets of 34 and 25 patients respectively provided by other 
European centers, was used as the reference model in 
this study. The model is magnetic resonance (MR) ven-
dor-independent and based on four predictors: clinical 
T and N staging and two radiomics features (Skewness 
and Entropy) extracted from staging 1.5 T MRI. The pCR 
achievement was considered as the binary outcome. Pre-
dictive performance of the model, evaluated by the Area 
under Curve (AUC) of the Receiver Operating Character-
istic (ROC) showed an AUC of 0.73 (95% CI 0.65–0.82) 
in the training cohort and 0.75 (95% CI 0.61–0.88) in the 
testing cohort. Successively, the model was validated with 
an inter-continental cohort of 59 patients from our Insti-
tute showing an AUC of 0.831 (95% CI, 0.701‐0.961) [25].

Patients
A total of 88 patients pathologically confirmed locally 
advanced rectal adenocarcinoma, clinical stage T3-4N0 
or T1-4N1-2 and treated in Sichuan Cancer Hospital 
& Institute between March 2017 and December 2020, 
were enrolled in this retrospective study. This study was 
approved by the Ethics Committee of Sichuan Cancer 
Hospital (approval number SCCHEC-02-2020-008). The 
need for informed written patient consent was waived 
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due to the retrospective nature of this study; neverthe-
less the patients gave oral consent to the use of their 
anonymized data for research purposes.

Patients with distant metastases, prior chemotherapy, 
or radiotherapy for rectal cancer, previous or concur-
rent malignancies, and known allergies to intravenous 
contrast agents or other contraindications for MR 
imaging (MRI) acquisition were excluded. All patients 
received MR examinations one week before preoperative 
chemoradiation. Two treatment protocols were as fol-
lows: first, a one-week short course of external radiation 
therapy (EBRT, 25 Gy in 5 doses of 5 Gy each); second, 
a long course of 5–6 weeks of EBRT (50.4 Gy in 28 frac-
tions of 1.8  Gy each) concurrently with chemotherapy 
(Capecitabine 825 mg/m2 die). After one of the two treat-
ment protocols was administered, 3–4 cycles of Capoex 
chemotherapy (oxaliplatin 130  mg/m2 d1 + capecit-
abine 1000  mg/m2, d1-14) was performed. There was a 
6–8 week break followed by TME and postoperative 4–5 
cycles of Capoex chemotherapy. TME was performed by 
either anterior resection or abdominoperineal resection. 
The pathologic staging served as the reference standard 
and was determined according to the TNM classification 
system recommended by the American Joint Commit-
tee on Cancer (AJCC), 7th ed., 2012 [26]. The resection 
specimens were evaluated by an experienced patholo-
gist blinded to the MRI data. Response to nCRT was 
determined by histopathological examination of surgi-
cally resected specimens: tumour responses were clas-
sified using tumor regression grade (TRG) according to 
Mandard et al. [27] as pCR (TRG = 1), or non-responder 
(TRG > 1).

Magnetic resonance imaging
All patients were scanned in our institute with a 3.0 Tesla 
MR (Siemens Skyra, Siemens Medical Systems) scanner, 
using a phased-array body coil one week before the start 
of chemoradiation with fixed image protocols. No spe-
cial bowel preparation was performed. The MR machine 
underwent quality assurance check monthly by the medi-
cal physics department with particular attention to the 
image’s quality controls. The scanning protocol followed 
by the patient and used for this study consists of an axial 
T2-weighted fast spin-echo sequence, with 2840 ms rep-
etition time and 131 ms echo time, traversal image reso-
lution 0.625 × 0.625 mm, slice spacing 3.85 mm and slice 
thickness 3.5 mm.

Features extraction
All MR images were reviewed in MIMMaestro worksta-
tion (MIM Software Inc, Cleveland, OH) by a 10-year 
experienced rectal MRI radiologist who delineated the 
gross tumor volume (GTV) following the guidelines 

defined in ICRU n.83 [28]. The segmentation process 
was performed manually and the radiomics analy-
sis was focused on the entire volume. All DICOM 
files containing the MR images and the correspond-
ing radiotherapy (RT) Structure files were imported in 
Moddicom, an open-source R (R Core Team, Vienna, 
Austria) statistical software package [29]. Images were 
pre-processed with the Laplacian of Gaussian (LoG) 
convolution kernel filter to decrease the high-frequency 
MRI signal noise and reduce the impact of large vari-
ations of signal. The size of the standard deviation (σ) 
in the LoG filter was scanned from 0.1 to 1.0 with a 
step-size of 0.05. To search for potential GTV features 
related to outcome prediction, five groups of features 
were extracted from the GTV on each pre-processed 
image, including statistical, morphological, grey-level 
co-occurrence matrix (GLCM), grey-level run length 
matrix (GLRLM), grey-level size zone matrix (GLSZM). 
In addition, three potential clinical features, i.e., clinical 
T-stage (cT), clinical N-stage (cN) and age, were also 
acquired for later analysis.

Feature selection and LASSO regression model
A two-step process was applied to feature selection. First, 
for all features extracted from pre-processed T2w images 
with variant LoG filters and three clinical features, the 
Mann–Whitney U-test was used to find potential fea-
tures significant for pCR. Second, to further reduce the 
number of final feature predictors and avoid multicollin-
earity between them, the binary logistic regression model 
LASSO (least absolute shrinkage and selection operator) 
was used to search an optimal subset of features from 
those screened out by Mann–Whitney test. By increas-
ing the lambda parameters incorporated in the LASSO 
model, more non-zero coefficients of the features were 
set to 0, so fewer features would be chosen. Meanwhile, 
the logistic regression model was established between 
chosen features and the pCR. The variation of the sub-
set of features with their corresponding coefficients in 
the model changes the AUC of the ROC. With fivefold 
cross-validation, the best lambda counterpart with the 
highest AUC was selected. The 95% confidence interval 
of the AUC of each ROC was computed using bootstrap 
method with 1000 resamplings. Also the Rad-score was 
constructed with the final subset of features with the fol-
lowing equation:

where n represents the total number of features, Xi is the 
ith feature, Ci is the coefficient of Xi and b is the intercept.

Rad - score =

n∑

i

CiXi + b
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Results
Patient characteristics
In this study, we enrolled 88 LARC patients who 
underwent standard CRT, including 12 (13.6%) 
responders and 76 (86.4%) non-responders to validate 
and enhance the performance of the reference model. 
Table  1 summarized patient tumors characteristics 
and outcomes. Statistical results investigating signifi-
cant differences were reported in the last column: chi-
square test was performed for categorical variables, 
Wilcoxon Mann Whitney for continuous ones. There 
were no significant differences in clinical variables 
between the original cohort used to validate the ref-
erence model and the new cohort used to set up the 
enhanced model. While the regimens and TRG show 
significant differences between two cohorts (p < 0.05).

Feature selection and rad‑score construction
A total of 1643 features were obtained from the LoG fil-
tered T2-weighted MR images. Sixty features were found 
significant for pCR in the Mann–Whitney U test. In the 
LASSO model, λ was chosen by fivefold cross-validation, 
and log(λ) of − 3.13 was the optimal subset for one clini-
cal feature (age) and seven radiomics features i.e. surface 
to volume ratio, sum variance, cluster tendency, entropy, 
high grey level run emphasis, sum entropy, high grey 
level run emphasis 1, and mean intensity with LoG filters 
of variant sigma, as listed in Table 2. Figure 1 highlights 
how the number of variables contained in the model var-
ies with the lambda parameter.

The Rad-score was calculated for each patient based on 
the linear combination of eight features with their respec-
tive coefficients. Waterfall plots showed the Rad-score 
for individuals in the training cohort (Fig. 2A) and valida-
tion cohort (Fig. 2B). There was a significant difference in 

Table 1  Patient and tumour characteristics, clinical data, and response outcome

a In the long radiotherapy course, two more chemotherapy cycles were scheduled at the end of the radiotherapy before surgery

Original cohort New cohort p value

Number 59 88

Age 0.387

Years, median (range) 56.0 (34.0–74.0) 55.5 (29.0–73.0)

Sex—no. (%) 0.565

Male 47 (79.7) 63 (71.6)

Female 12 (20.3) 25 (28.4)

Tumor stage—no. (%)

cT stage 0.239

T2 6(10.2) 2 (2.3)

T3 34 (57.6) 61 (69.3)

T4 19 (32.2) 25 (28.4)

cN stage 0.365

N0 25 (42.4) 29(32.9)

N1 24 (40.7) 21(23.9)

N2 10(16.9) 38 (43.2)

Interval between MRI and start CRT​  < 0.05

Days, median (range) 14 (4–50) 13 (4–35)

Interval between end CRT and surgery  < 0.05

RT Short Course: days, median (range) 10 (8–15) 9(5–15)

RT Long Coursea: days, median (range) 59(30–82) 67(30–108)

RT Course  < 0.05

Short (5fr x 5 Gy)—no. (%) 19 (32.2) 10 (11.4)

Long (28fr × 1.8 Gy)—no. (%) 39 (67.8) 78 (88.6)

eMR scanner Strength  < 0.05

1.5 T no (%) 32 (54.2)

3.0 T no (%) 27 (45.8) 88 (100.0)

TRG​  < 0.05

1—no. (%) 10 (16.9) 12 (13.6)

2–5—no. (%) 49 (83.1) 76 (86.4)
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rad score between pCR and non-pCR group in both the 
training (p < 0.001) and the validation cohort (p < 0.003).

Performance comparison
The AUC value of the ROC curves of the reference model 
for the original cohort and new cohort of patients are 

shown in Fig. 3; the AUC of 0.831 (95% CI, 0.701–0.961), 
and 0.828 (95% CI, 0.700–0.956) in the original and new 
validation cohorts, respectively, showed reproducibility 
in the applicability of the original model; whereas the 
AUC value of the ROC curves of the enhanced model 
portrayed in Fig. 4 is 0.926 (95% CI, 0.859–0.993) for the 
training and 0.926 (95% CI, 0.767–1.00) for the validation 
group.

Discussion
MRI after nCRT usually has the problem of over-staging 
for patients with a pCR because of difficulties in differen-
tiating desmoplastic reaction caused by fibrosis alone or 
fibrosis that contains tumor cell [30, 31], thus pathologi-
cal evaluation of the surgical specimen is the only reliable 
surrogate marker that correlates with long-term oncolog-
ical outcomes. However, such data are only available after 
completion of all preoperative treatments and surgery 
and cannot be used to guide the therapeutic approach. 
Therefore, the development of non-invasive biomarkers 
with the capacity to provide early prediction is essential. 
Such biomarkers would help to identify patients who are 
less likely to benefit from current therapies as they are 
more likely to have a pCR. Radiomics, as an emerging 
non-invasive predictive biomarker, has been proven valid 
in many scientific fields, including the prediction of pCR 
for LARC patients.

The reproducibility is a big concern in the field of 
radiomic study since the features extracted from MR 
images could be impacted by patients, sequences, acqui-
sition parameters, or simply time [32]. In this study, we 
first validated the previous GLM prediction model [19] 
with an intercontinental cohort enrolled in our hospital. 
Although the cohort in this study used 3 T T2-weighted 
pre-nCRT MRI images which is different from the 
modality used for training in GLM model, this fact might 
potentially interfere with the reproducibility of model 
performance [33]. Table  1 reported there were indeed 
significant differences of regimens and TRG between two 
cohorts. Nevertheless, a good result was still achieved, 

Table 2  The coefficient, and sigma of LoG filter for the eight 
features adopted in the enhanced prediction model

Feature name Sigma of LoG 
filter

Coefficient

Sum entropy 0.65 1.45E0

Surface to volume ratio 0.7 5.67E−01

Entropy 0.5  − 1.46E−01

Age –  − 7.7E−03

High grey level run emphasis 0.6 1.27E−03

Sum variance 0.65 1.26E−03

Mean intensity 0.65  − 4.57E−04

High grey level run emphasis 1 0.6 3.16E−07

Cluster tendency 0.65 2.37E−17

Fig. 1  Selection of the optimal lambda value for the enhanced 
LASSO model

Fig. 2  The radiomics score of the enhanced model for patients in (A) the training cohort and (B) the validation cohort
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which demonstrated the reproducibility and generaliza-
tion of GLM model.

As for radiomic features which are significant to pCR 
prediction, the findings vary from study to study. This is 
partly because of the heterogeneity of MRI modality uti-
lized in those studies. For example, De et al. [17] found 
the change of Kurtosis, MPP and Skewness of 3 T T2w 
MRI throughout treatment is significant for the predic-
tion of pCR; Li et al. [21] found the difference of Skew-
ness, Run length Non-uniformity, Local Entropy Max, 
Local Range Min Coarseness, Maximum 3D diameter, 

Surface Area Density between pre-nRT and post-nRT 
1.5 T T1w/T2w MRI is significant; Zhou et al. [16] used 
Skewness, Mean, Median, entropy, dissimilarity and cor-
relation, etc. of 1.5 T DWI, T1w/T2w and CE-T1w MRI 
for model building. While the reference paper (GLM 
model) for this study only explored the significance of 
first-order features from T2w MRI images, Skewness and 
Entropy were found significant and used for prediction.

The rationale for optimizing a model already validated 
in a cohort of patients from our hospital lies in the fact 
that the cohort of patients is representative of the patient 

Fig. 3  ROC curve of the reference model (GLM) for the original (A) and new (B) validation cohort of patients

Fig. 4  ROC curves of the enhanced model (LASSO) for the training (A) and validation (B) group of the new cohort of patients
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population coming from our hospital. Hereby we expand 
the search range of features from first-order to morpho-
logical, GLCM, GLRLM, GLSZM of a cohort of patients 
admitted in our institution having MRI imaging with uni-
form characteristics and protocols, as well as the type of 
well-defined treatment course. Also, we add Age at the 
beginning of feature selection since some studies [16, 
19, 34] show that the incorporation of clinical character-
istics into the predictive model can improve model per-
formance. Considering finding the most significant ones 
from a large number of initially extracted features, we 
adopted the LASSO model in this study. Compared to the 
previously developed GLM model, L1 regularization was 
added in the cost function of LASSO, which can reduce 
the dimensionality of radiomic features and avoid multi-
linearity. Finally, seven radiomics features and one clini-
cal factor were selected after the regression coefficients 
of other features were penalized to zero. Comparing 
those predictors (features) in previous GLM and current 
LASSO, only Entropy of GTV is shared by both predic-
tive models while other predictors are different. The find-
ing of AUC of 0.926 indicates that LASSO indeed has an 
enhanced predictive performance compared to GLM.

The present study has some limitations. First, the sam-
ple size is still limited compared with the relatively large 
number of predictors. Nowadays there are many stand-
ardized features. With the pre-processing Log filter, the 
number of extracted features could increase to the level 
of thousand. Hopefully, we could include more patients 
in the future in addition to the cohort of 88 patients 
enrolled in this study. Second, the radiomic-based model 
developed here only utilized MRI T2w images. Although 
the use of one single MRI sequence could simplify the 
process of applying prediction tool in clinical routine, 
however, some other MRI sequences, i.e. diffusion-
weighted image (DWI), show better delineation repro-
ducibility and detection of tumor than T2w images [35, 
36]. The inclusion of DWI or other MRI modalities in a 
radiomic study has the potential to further improve pre-
diction performance.

Conclusions
Previously GLM model show good reproducibility in pre-
dicting pCR to nCRT in LARC; The enhanced LASSO 
model developed in this study has the potential to 
improve prediction accuracy.

Acknowledgements
None.

Authors’ contributions
BT, JL, QP and QH contributed to the study concept, design and data inter-
pretation. PD, ND and GY worked on the acquisition of data. BT, VV and LCO 
worked on the data analysis. BT, LB, LCO and QH worked on the preparation of 
the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported in part by Sichuan Province Science and Technology 
Support Program (21RCYJ0022) and Sichuan Cancer Hospital Youth Project 
(YB2021032).

Availability of data and materials
The datasets generated during and analyzed during the present study are not 
publicly available due to participant privacy, but are available from the cor-
responding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the Ethics Committee of Sichuan Cancer Hospital 
with number SCCHEC-02-2020-008. Informed consent was waived by Ethics 
Committee of Sichuan Cancer Hospital owing to the retrospective, observa-
tional and anonymous nature of this study. The methods were carried out in 
accordance with the relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declared no competing interests.

Author details
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Edu-
cation, Institute of Nuclear Science and Technology, Sichuan University, 
Chengdu, China. 2 Department of Radiation Oncology, Radiation Oncology 
Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, 
Chengdu, China. 3 Dipartimento Scienze Radiologiche, Fondazione Policlinico 
Universitario “A. Gemelli” IRCCS, Rome, Italy. 

Received: 18 January 2022   Accepted: 4 March 2022

References
	1.	 Votava J, Kachlik D, Hoch J. Total mesorectal excision—40 years of stand-

ard of rectal cancer surgery Acta Chir Belg 2020, 120(4):286–290.
	2.	 Hajibandeh S, Hajibandeh S, Eltair M, George A T, Peravali R. Meta-analysis 

of transanal total mesorectal excision versus laparoscopic total mesorec-
tal excision in management of rectal cancer. Int J Colorectal Dis 2020(12).

	3.	 Janjan NA, Khoo VS, Abbruzzese J, Pazdur R, Dubrow R, Cleary KR, et al. 
Tumor downstaging and sphincter preservation with preoperative chem-
oradiation in locally advanced rectal cancer: the M.D. Anderson Cancer 
Center experience. Int J Radiat Oncol Biol Phys. 1999;44(5):1027–38.

	4.	 Pucciarelli S, Toppan P, Friso ML, Russo V, Pasetto L, Urso E, et al. Complete 
pathologic response following preoperative chemoradiation therapy 
for middle to lower rectal cancer is not a prognostic factor for a better 
outcome. Dis Colon Rectum. 2004;47:1798–807.

	5.	 Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo L-J, et al. Long-term 
outcome in patients with a pathological complete response after chemo-
radiation for rectal cancer: a pooled analysis of individual patient data. 
Lancet Oncol. 2010;11(9):835–44.

	6.	 Issa N, Murninkas A, Powsner E, Dreznick Z. Long-term outcome of local 
excision after complete pathological response to neoadjuvant chemora-
diation therapy for rectal cancer. World J Surg. 2012;36(10):2481–7.

	7.	 Sanghera P, Wong DWY, Mcconkey CC, Geh JI, Hartley A. Chemora-
diotherapy for rectal cancer: an updated analysis of factors affecting 
pathological response. Clin Oncol. 2008;20(2):176–83.

	8.	 Barbaro B, Vitale R, Leccisotti L, Vecchio FM, Santoro L, Valentini V, et al. 
Restaging locally advanced rectal cancer with MR imaging after chemo-
radiation therapy. Radiographics. 2010;30(3):699–716.

	9.	 Akiyoshi T, Kobunai T, Watanabe T. Predicting the response to preopera-
tive radiation or chemoradiation by a microarray analysis of the gene 
expression profiles in rectal cancer. Surg Today. 2012;42(8):713–9.



Page 8 of 8Tang et al. BMC Medical Imaging           (2022) 22:44 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	10.	 Grade M, Wolff HA, Gaedcke J, Ghadimi BM. The molecular basis of 
chemoradiosensitivity in rectal cancer: implications for personalized 
therapies. Langenbecks Arch Surg. 2012;397(4):543–55.

	11.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Aerts HJWL. Radiom-
ics: extracting more information from medical images using advanced 
feature analysis. Eur J Cancer. 2007;43(4):441–6.

	12.	 Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho 
S, et al. Decoding tumour phenotype by noninvasive imaging using a 
quantitative radiomics approach. Nat Commun. 2014;5:4006.

	13.	 Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsoter N, Papp L, et al. 
Textural parameters of tumor heterogeneity in F-FDG PET/CT for therapy 
response assessment and prognosis in patients with locally advanced 
rectal cancer. J Nucl Med. 2014;55(6):891–7.

	14.	 Lovinfosse P, Polus M, Van Daele D, Martinive P, Daenen F, Hatt M, et al. 
FDG PET/CT radiomics for predicting the outcome of locally advanced 
rectal cancer. Eur J Nucl Med Mol Imaging. 2018;45(3):365–75.

	15.	 Hamerla G, Meyer HJ, Hambsch P, Wolf U, Kuhnt T, Hoffmann KT, et al. 
Radiomics model based on non-contrast ct shows no predictive power 
for complete pathological response in locally advanced rectal cancer. 
Cancers (Basel) 2019;11(11).

	16.	 Zhou X, Yi Y, Liu Z, Cao W, Lai B, Sun K, et al. Radiomics-based prethera-
peutic prediction of non-response to neoadjuvant therapy in locally 
advanced rectal cancer. Ann Surg Oncol. 2019;26(6):1676–84.

	17.	 De Cecco CN, Ganeshan B, Ciolina M, Rengo M, Meinel FG, Musio D, et al. 
Texture analysis as imaging biomarker of tumoral response to neoad-
juvant chemoradiotherapy in rectal cancer patients studied with 3-T 
magnetic resonance. Investig Radiol. 2015;50(4):239–45.

	18.	 Boldrini L, Cusumano D, Chiloiro G, Casa C, Masciocchi C, Lenkowicz J, 
et al. Delta radiomics for rectal cancer response prediction with hybrid 
0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-
generating study for an innovative personalized medicine approach. 
Radiol Med. 2019;124(2):145–53.

	19.	 Dinapoli N, Barbaro B, Gatta R, Chiloiro G, Casa C, Masciocchi C, et al. 
Magnetic resonance, vendor-independent, intensity histogram analysis 
predicting pathologic complete response after radiochemotherapy of 
rectal cancer. Int J Radiat Oncol Biol Phys. 2018;102(4):765–74.

	20.	 Cusumano D, Dinapoli N, Boldrini L, Chiloiro G, Gatta R, Masciocchi C, 
et al. Fractal-based radiomic approach to predict complete pathologi-
cal response after chemo-radiotherapy in rectal cancer. Radiol Med. 
2018;123(4):286–95.

	21.	 Li Y, Liu W, Pei Q, Zhao L, Gungor C, Zhu H, et al. Predicting pathological 
complete response by comparing MRI-based radiomics pre- and post-
neoadjuvant radiotherapy for locally advanced rectal cancer. Cancer Med. 
2019;8(17):7244–52.

	22.	 Yi X, Pei Q, Zhang Y, Zhu H, Wang Z, Chen C, et al. MRI-based radiomics 
predicts tumor response to neoadjuvant chemoradiotherapy in locally 
advanced rectal cancer. Front Oncol. 2019;9:552.

	23.	 Tang X, Jiang W, Li H, Xie F, Dong A, Liu L, et al. Predicting poor response 
to neoadjuvant chemoradiotherapy for locally advanced rectal cancer: 
model constructed using pre-treatment MRI features of structured report 
template. Radiother Oncol. 2020;148:97–106.

	24.	 Delli Pizzi A, Chiarelli AM, Chiacchiaretta P, d’Annibale M, Croce P, Rosa C, 
et al. MRI-based clinical-radiomics model predicts tumor response before 
treatment in locally advanced rectal cancer. Sci Rep. 2021;11(1):1–11.

	25.	 Boldrini L, Lenkowicz J, Orlandini LC, Dinapoli N, Valentini V. PH-0716: 
Radiomics pCR predictive model in rectal cancer: an intercontinental 
validation on real world data. Radiother Oncol. 2020;152:S405.

	26.	 Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th 
edition of the AJCC cancer staging manual and the future of TNM. Ann 
Surg Oncol 2010;17(6):1471–1474.

	27.	 Mandard AM, Dalibard F, Mandard JC, Jacques MMA, Henry-Amar M, 
Petiot JF, et al. Pathologic assessment of tumor regression after preopera-
tive chemoradiotherapy of esophageal carcinoma. Clinicopathologic 
correlations. Cancer 1994.

	28.	 Hodapp N. The ICRU Report 83: prescribing, recording and reporting 
photon-beam intensity-modulated radiation therapy (IMRT)]. Strahlen-
ther Onkol. 2012;188(1):97.

	29.	 Team CR. R: A Language and Environment for Statistical Computing. 
Computing 2015, Vienna, Austria: R Foundation for Statistical Computing. 
https://​www.r-​proje​ct.​org.

	30.	 Glimelius B, Beets-Tan R, Blomqvist L, Brown G, Nagtegaal I, Påhlman L, 
et al. Mesorectal fascia instead of circumferential resection margin in 
preoperative staging of rectal cancer. J Clin Oncol. 2011;29(16):2142–3.

	31.	 Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans 
K, et al. ESMO Consensus Guidelines for management of patients with 
colon and rectal cance. A personalized approach to clinical decision mak-
ing. Ann Oncol. 2012;23(10):2479–516.

	32.	 Tofts PS. Concepts: measurement and MR. Quantitative MRI of the brain: 
measuring Changes Caused by Disease; 2003.

	33.	 Lee J, Steinmann A, Ding Y, Lee H, Court LE. Radiomics feature robustness 
as measured using an MRI phantom. Sci Rep. 2021;11(1):1–14.

	34.	 Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development 
and validation of a radiomics nomogram for preoperative predic-
tion of lymph node metastasis in colorectal cancer. J Clin Oncol. 
2016;34(18):2157–64.

	35.	 Rosa C, Caravatta L, Pizzi AD, Di Tommaso M, Cianci R, Gasparini L, et al. 
Reproducibility of rectal tumor volume delineation using diffusion-
weighted MRI: agreement on volumes between observers. Cancer/Radio-
thérapie. 2019;23(3):216–21.

	36.	 Delli Pizzi A, Caposiena D, Mastrodicasa D, Trebeschi S, Lambregts D, Rosa 
C, et al. Tumor detectability and conspicuity comparison of standard 
b1000 and ultrahigh b2000 diffusion-weighted imaging in rectal cancer. 
Abdom Radiol. 2019;44(11):3595–605.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.r-project.org

	Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer
	Abstract 
	Purpose: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Reference model
	Patients
	Magnetic resonance imaging
	Features extraction
	Feature selection and LASSO regression model

	Results
	Patient characteristics
	Feature selection and rad-score construction
	Performance comparison

	Discussion
	Conclusions
	Acknowledgements
	References


